skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mucha, Peter J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2026
  2. The use of network analysis as a tool has increased exponentially as more clinical researchers see the benefits of network data for modeling of infectious disease transmission or translational activities in a variety of areas, including patient-caregiving teams, provider networks, patient-support networks, and adoption of health behaviors or treatments, to name a few. Yet, relational data such as network data carry a higher risk of deductive disclosure. Cases of reidentification have occurred and this is expected to become more common as computational ability increases. Recent data sharing policies aim to promote reproducibility, support replicability, and protect federal investment in the effort to collect these research data by making them available for secondary analyses. However, typical practices to protect individual-level clinical research data may not be sufficiently protective of participant privacy in the case of network data, nor in some cases do they permit secondary data analysis. When sharing data, researchers must balance security, accessibility, reproducibility, and adaptability (suitability for secondary analyses). Here, we provide background about applying network analysis to health and clinical research, describe the pros and cons of applying typical practices for sharing clinical data to network data, and provide recommendations for sharing network data. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  3. Abstract Partitioning networks into communities of densely connected nodes is an important tool used widely across different applications, with numerous methods and software packages available for community detection. Modularity-based methods require parameters to be selected (or assume defaults) to control the resolution and, in multilayer networks, interlayer coupling. Meanwhile, most useful algorithms are heuristics yielding different near-optimal results upon repeated runs (even at the same parameters). To address these difficulties, we combine recent developments into a simple-to-use framework for pruning a set of partitions to a subset that are self-consistent by an equivalence with the objective function for inference of a degree-corrected planted partition stochastic block model (SBM). Importantly, this combined framework reduces some of the problems associated with the stochasticity that is inherent in the use of heuristics for optimizing modularity. In our examples, the pruning typically highlights only a small number of partitions that are fixed points of the corresponding map on the set of somewhere-optimal partitions in the parameter space. We also derive resolution parameter upper bounds for fitting a constrained SBM ofKblocks and demonstrate that these bounds hold in practice, further guiding parameter space regions to consider. With publicly available code (http://github.com/ragibson/ModularityPruning), our pruning procedure provides a new baseline for using modularity-based community detection in practice. 
    more » « less
  4. ABSTRACT ObjectiveA holistic understanding of the naturalistic dynamics among physical activity, sleep, emotions, and purpose in life as part of a system reflecting wellness is key to promoting well-being. The main aim of this study was to examine the day-to-day dynamics within this wellness system. MethodsUsing self-reported emotions (happiness, sadness, anger, anxiousness) and physical activity periods collected twice per day, and daily reports of sleep and purpose in life via smartphone experience sampling, more than 28 days as college students (n= 226 young adults; mean [standard deviation] = 20.2 [1.7] years) went about their daily lives, we examined day-to-day temporal and contemporaneous dynamics using multilevel vector autoregressive models that consider the network of wellness together. ResultsNetwork analyses revealed that higher physical activity on a given day predicted an increase of happiness the next day. Higher sleep quality on a given night predicted a decrease in negative emotions the next day, and higher purpose in life predicted decreased negative emotions up to 2 days later. Nodes with the highest centrality were sadness, anxiety, and happiness in the temporal network and purpose in life, anxiety, and anger in the contemporaneous network. ConclusionsAlthough the effects of sleep and physical activity on emotions and purpose in life may be shorter term, a sense of purpose in life is a critical component of wellness that can have slightly longer effects, bleeding into the next few days. High-arousal emotions and purpose in life are central to motivating people into action, which can lead to behavior change. 
    more » « less
  5. null (Ed.)